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Introduction

Often a combinatorial optimization problem can be formulated as an integer
linear programming problem:

) max cx,
subject to Ax=<b,
x integral.

In some cases, the LP-relaxation, obtained from (1) by deleting the integrality con-
dition on x, has already an integral optimum solution — without requiring so a
priori. This allows to apply purely linear programming methods to solve the com-
binatorial optimization problem.

This is a basis of the polyhedral methods in combinatorial optimization. As an
example consider the following optimum branching problem. Suppose we are given
n locations 1, ..., n, together with distances d;; between them (not-necessarily sym-
metric, i.e., d;#dj; is allowed). We wish to choose certain of the connections i/ in
such a way that they together form a rooted directed spanning tree, with root 1 (a
1-branching), and so that the sum of the distances of the connections chosen is as
small as possible. In terms of integer linear programming:

n

) min Y, djx;,
ij=1
n
subject to Y, x;=1 G=2,...,n),
iz
Xzl @#CC{2...,n}),

i¢C jeC

)C,‘jZO (i,j=1,...,)1),

X;; integer GJj=1,..,n.
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It was shown by Edmonds [1967] that in this program the integrality condition can
be skipped without changing the minimum value. It means that we can solve the op-
timum branching problem by solving the linear programming problem

n

(3) min E d,‘inj,
Li=1
n
subject to Y, x;=1 G=2,...,n),
i=1
x;=1 @+Cc{2,..,n}),
i¢C jeC
x;=0 ,j=1,...,n).

Note that this LP-problem has exponentially many constraints, so that a too
straightforward application of LP-techniques will be not efficient. Yet, one can
show the polynomial-time solvability of the problem with the ellipsoid method. This
method gives that if for any given x the constraints Ax<b can be checked in poly-
nomial time, then also the linear program max{cx|Axs b} can be solved in poly-
nomial time (cf. Grotschel, Lovasz and Schrijver [1981]). Here checking means:
given x, decide if it satisfies Ax=<b, and if not, find a violated constraint. This can
be done, sometimes, faster than by testing each of the inequalities one by one.

E.g., the constraints in (3) can be checked as follows. Given (x;; li, j =1..,n),
first check the first and third class of constraints in (3), altogether n*+n—1 con-
straints. If these conditions are fulfilled, check the remaining constraints by con-
sidering x;; as a ‘capacity’ function on the arcs ij, and by determining, for each
J#1, acut C; separating 1 from j of minimum capacity (with Dinits’ version of the
Ford-Fulkerson max-flow min-cut algorithm). If each of the cuts C; has capacity
at least 1, then all constraints in (3) are fulfilled. Otherwise, we have a cut C; of
capacity less than 1, yielding a violated inequality in (3).

Note that this algorithm checks the constraints in (3) in time polynomially bound-
ed by n and the size of x, while the constraint system itself has size exponential in 7.

The ellipsoid method now gives that also the minimum (3) can be determined in
time polynomially bounded by n and the size of (dj; | i,j=1,...,n). Therefore, the
optimum branching problem is also polynomially solvable. (In fact, Edmonds
[1967] also gave a direct polynomial algorithm.)

This gives one motivation for studying polyhedral methods. The ellipsoid method
proves polynomial solvability, it is however not (yet) a practical method. The poly-
hedral methods can be used to deduce also practical methods from the LP-represen-
tation of the combinatorial problem, e.g., by imitating the simplex method or by
a primal-dual approach (see Papadimitriou and Steiglitz [1982]).

A theoretical corollary of many polyhedral results is the ‘facial’ description of
combinatorial polyhedra. E.g., Edmonds’ theorem mentioned above is equivalent
to the statement that the feasible region of (3) has integral vertices. Equivalently,

that the feasible region of (3) is the convex hull of the characteristic vectors of the
1-branchings.
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A second theoretical interpretation is in terms of a min-max relation. Edmonds’
theorem says that (2) and (3) are equal for each choice of the d;. By the duality
theorem of linear programming, for d;>0, (3) is equal to

4) max Y ye,
c
subject to ), yesd;  (,j=1,...,n),
Gi¢GjeC
ye=0 @B+Cc{2,...,n}).

Therefore, Edmonds’ theorem is equivalent to: the minimum value in the optimum
branching problem is equal to the maximum (4). It was shown moreover by Fulker-
son [1974] that, if the dj; are integer, then the maximum (4) also has an integral op-
timum solution.

So polyhedral methods can yield polynomial-time solvability, practical algorithms
and theoretical facts. For NP-complete problems the situation is a little different,
although polyhedral methods can be helpful.

First observe that each integer linear programming problem can be viewed as an
LP-problem, since the convex hull of the integral vectors in a convex polyhedron
is itself a convex polyhedron. However, the inequalities necessary for describing this
last polyhedron can be very complicated: it was shown by Karp and Papadimitriou
[1980] that if a class of ILP-problems is NP-complete, and if we assume NP # co-NP
(as is generally believed), then among the inequalities necessary for the correspon-
ding LP-problem there are those for which a proof of validity requires exponential
time. That is, the convex hull of the integral solutions has facets which cannot be
shown even to be valid in polynomial time. So if NP s co-NP, there is no hope for
a nice ILP-formulation of any NP-complete problem where the integrality condi-
tions are superfluous. All necessary inequalities can be found in principle, viz. by
the cutting plane procedure of Gomory [1958], but this is not a polynomial-time
method.

As an example, consider the NP-complete traveling salesman problem:

n

5 min Y, djx;,
ij=1
n
subject to Y, x;=1 U=1..,n),
i=1
n
Y x;=1 (i=1,....,n),
j=1
Y x;=l @#Cc{2...,n}),
igC jeC
x;=0 GJj=1,...,n),

Xx;; integer G j=1,...,n).
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Removing the integrality condition generally will change the minimum, and finding
all inequalities necessary to be added to make the integrality condition superfluous
seems infeasible. We can use however the LP-relaxation of (5):

n
6) min Y dyx;,

=1

n
subject to Y, x;=1 G=1,...,n),
i=1
n
Y x=1 (i=1,...,n),
i=1
T oxzl @#CC{2..,n)),

ieCjeC
x;20 Gj=1,...,n).

This minimum can be used as a lower bound in a branch-and-bound method for the
traveling salesman problem. Again one can show, with a method similar to the one
used for (3), that (6) is solvable in time polynomially bounded by the size of d;; and
by n, but this is with the ellipsoid method, and not practical. Among the practical
methods proposed to solve (6) is the Lagrange-approach of Held and Karp [1962]:
The Lagrange function is:

(7) F(A):=min.zldijx,-j+.zl /1[(1'-.21Xij>a
i= Jj=

L=

n
subject to ), x;=1 U=1,...,n),
i=1

Y o=zl @#CC{2...,n),
ieC jeC

X;=0 Gj=1,...,n),

for 2 € R". Note that (7) is a linear program of type (3), so that we can add integra-
lity conditions on x;; without changing the minimum value. Moreover, for each fix-
ed 4, F(A) can be calculated in polynomial time. F'is a concave function, whose max-
imum is exactly equal to the minimum value of (6), which can be seen by writing
down the dual programs of the programs (6) and (7). Held and Karp applied the
so-called subgradient method for maximizing F.

An alternative method for solving (6) is to first solve (6) with the simplex method
while deleting the third set of constraints. Next we check (e.g. with the max-flow
min-cut algorithm), whether the optimal solution satisfies the third set of con-
straints. If so we are finished. If not, add a violated constraint to the linear pro-
gram, and do some dual pivot steps to obtain a new LP-optimum. Next check if this
new solution satisfies the third set of constraints. If so we are finished. If not, repeat
as before. This algorithm terminates, or can be stopped before termination if no
significant progress is made anymore — in that case we can use the current LP-
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optimum value as a lower bound in the branch-and-bound method for the traveling
salesman method. This cutting plane approach was used successfully by Crowder,
Grotschel and Padberg for problems with up to 318 cities.

Having given some introduction and motivation to polyhedral methods, we now
discuss some of the proof methods.

1. Elementary polyhedral methods

Elementary, though nontrivial properties of polyhedra can be very helpful in
polyhedral combinatorics.
A set P of vectors in R" is called a polyhedron if

P={x|Ax=<b} ®)

for some system Ax=< b of linear inequalities. Here and in the sequel, by using nota-
tion like Ax<b, we shall assume implicitly compatibility of sizes, so that if 4 is an
m X n-matrix, then b is a column vector of m components.

A set P of vectors is called a polytope if it is the convex hull of finitely many vec-
tors. Fundamental is the following intuitively clear, but nontrivial to prove, result,
which is essentially due to Farkas [1894], Minkowski [1896] and Weyl [1935]:

%) P is a polytope iff P is a bounded polyhedron.

An element x* of P is a vertex if it is not a convex combination of other elements
of P. Each vertex of P= {x|Axsb} is determined by setting # linearly independent
constraints in Ax=<b to equality.

Application 1. Perfect matchings in bipartite graphs and doubly stochastic matrices.
A square matrix 4 =(a;) of order n is called doubly stochastic if

(10) Lag=1 (=L..m,

aUZO (i,jzly---vn)'

A permutation matrix is a {0, 1 }-matrix with in each row and in each column exactly
one 1. Birkhoff [1947] and Von Neumann [1953] showed:

(1 A is doubly stochastic iff A is a convex combination of permutation
matrices.

Proof. By induction on the order n of A, the case n=1 being trivial. Consider the
polytope P, in n* dimensions, of all doubly stochastic matrices. So P is defined by
(10). To prove (11), it suffices to show that each vertex of P is a convex combination
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of permutation matrices. So let A4 be a vertex of P. Then n? linearly independent
constraints among (10) are satisfied by A with equality. As the first 27 constraints
in (10) are linearly dependent, it follows that at least n> —2n+ 1 of the a; are 0. So
A has a row with n—~1 0’s and one 1. Without loss of generality, a;;=1. So all
other entries in the first row and in the first column are 0. Then deleting the first
row and first column of A gives a doubly stochastic matrix of order n—1, which
by our induction hypothesis is a convex combination of permutation matrices of
order n— 1. Therefore, A itself is a convex combination of permutation matrices of
order n. I

It follows that (10) has integral vertices. Hence in any integer linear program over
(10) we can delete the integrality conditions. Therefore, the optimal assignment
problem

n
(12) min . Z C,-jx,-,-,

iLj=1

n
subject to Y, x;=1 G=1,...,n),
i=1

n
Z xl:]':l (i=l,...,n),
j=1

xU=O or 1l (i,j=17"'3n))

is just a linear program.

Another corollary is that each regular bipartite graph G of degree r=1 has a
perfect matching (Frobenius [1912], Kdnig [1916]). To see this, let {1,...,n} and
{n+1,...,2n} be the colour classes of G, and define the n X n-matrix 4 =(ay) by:

(13) a;:=

~ =

- (number of edges connecting i and 7 + ).

Then A is doubly stochastic, and hence, by (11), there exists a permutation matrix
B=(b;) such that ;>0 if b;=1. Therefore, the edges connecting / and n+j if
b;=1 form a perfect matching in G. Deleting these edges and repeating this argu-
ment gives that the edges of G can be split into perfect matchings.

Application 2. The perfect matching polytope. Let G=(V,E) be an undirected
graph, with |V| even, and let P be the associated perfect matching polytope, i.e.,
P is the convex hull of the characteristic vectors (in {0,1}£) of the perfect match-

ings in G. Edmonds’ matching polyhedron theorem [1965] states that P is the poly-
tope defined by

(14) Xe=0 (eeE),
x(@0) =1 (vel),
x(@@(W)=1 (WgV, |W| odd).
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Here 6(W) is the set of edges of G intersecting W in exactly one point, d(v) :=
d({v}), and x(F):= ¥, rX, whenever FCE.

Let Q be the set of vectors in R” satisfying (14). As the characteristic vector of
any perfect matching satisfies (14), it follows that P ¢ Q — the content of Edmonds’
theorem is the converse inclusion; equivalently, that the polytope defined by (14) has
integral vertices only.

Edmonds’ matching polyhedron theorem. The perfect matching polytope is deter-
mined by the inequalities (14).

Proof. Let G be a smallest graph with Q& P (that is, with |V |+ |E| as small as possi-
ble). Let x be a vertex of Q not contained in P. Then 0<x,<1 for all e in E —
otherwise we could delete e from G to obtain a smaller counterexample. Moreover,
|E|>|V|~ otherwise, either G is disconnected (in which case one of the components
of G will be a smaller counterexample), or G has a point v of degree 1 (in which
case the edge e incident with v has x,=1), or G is an even circuit (for which the
theorem is trivial).

Since x is a vertex, there are |E| linearly independent constraints among (14)
satisfied by x with equality. Hence there exists a W C V with |W| odd, |W|=3,
[VA\W|=3, and x(6(W))=1. Let G, and G, arise from G by contracting W and
V\ W, respectively. Let x; and x, be the corresponding projections of x onto the
edge sets of G, and G,, respectively. Since x; and x, satisfy the inequalities (14) for
the smaller graphs G, and G,, it follows that x; and x, can be decomposed as con-
vex combinations of perfect matchings in G, and G,, respectively. These decom-
positions can be easily glued together to form a decomposition of x as a convex
decomposition of perfect matchings in G, contradicting our assumption.

[This glueing can be done, e.g., as follows. By the rationality of x (as it is a vertex
of Q), there exists a natural number K such that, for i=1,2, Kx; is the sum of the
incidence vectors of the perfect matchings Fi, ..., Fy of G; (possibly with repeti-
tions). Since for each e in (W), e is contained in KXx, of the Fj’ as well as in Kx,
of the F}, we may assume that, for each j=1,..., K, F and F/ intersect in an edge
of 8(W). So Fjl Usz is a perfect matching in G, and Kx is the sum of the incidence
vectors of these perfect matchings. Hence x itself is a convex combination of perfect
matchings in G.] [

Finding a minimum weighted perfect matching in G is clearly the same as solving

(15) min ¥ w,x,
eeE

subject to x,=0 (eekE),
x(6()=1 veV),
x(0(W)) =1 (WcV, |W| odd),

X, integer (eekE).
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By Edmonds’ theorem, we can delete the integrality condition, and just solve the
LP-relaxation. Padberg and Rao [1980] showed that the constraints in (15) can be
checked in polynomial time — hence, with the ellipsoid method, the minimum can
be calculated in polynomial time. Edmonds [1965] gave a direct polynomial-time
algorithm, the famous blossom-algorithm, which in fact yields the matching poly-
hedron theorem as a by-product.

2. LP-duality and complementary slackness

Consider the following equations:

16) max{cx|Ax<b} =min{yb|y=0, yA=c}.
and
an max{cx|x=0, Ax<b}=min{yb|y=0, yA=c}.

The Duality Theorem of linear programming states that (16) (similarly (17)) holds
provided that at least one of the two optima exists.

Moreover, there are the complementary slackness conditions: if x and y satisfy
Ax<b and y=0, yA=c, then

(18) x and y are optimal in (16) iff
for each j: y;>0 implies (Ax);=b;.

Similarly, if x and y satisfy x=0, Ax<b and y=0, yA=c then:

(19) x and y are optimal in (17) iff
for each j: y;>0 implies (4x);=b;, and
for each i: x;>0 implies (yA);=¢;.

Application 3. Max-flow min-cut. Let D=(V, A) be a directed graph, let r,s€ V, and
¢:A—R,. Then the Duality Theorem of linear programming yields:

(20) max x(3 *(r)) — x(5(r)) =min Y, ¢, Y,
aeA
subject to subject to
x@TW)=x(0"()) (eV,v#rs) y,20 (aeA),
O=<x,=c, (acA) z,€R (ve V),

—Z,+2,+Y,20 (a=(,w)eA),
zZ,=1, z,=0.

Here 6 *(v) and 6 ~(v) denote the sets of arcs leaving v, and entering v, respectively.

The maximum (20) can be seen as the maximum amount of r-s-flow subject to the
capacity constraint c.
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Now let x, y,z be a, possibly fractional, optimal solution for the optima in (20).
Define

(1) W:={veV|z,=1}.

Then re W, s¢ W. Let 6" (W) and 6 (W) denote the sets of arcs leaving W and
entering W, respectively. If a= (v, w)ed (W), then y,=z,—-z,>0, and hence, by
complementary slackness, x,=c,. If a=(v, w) e 6~ (W), then y, +z,,— 2,22, — 2,>0,
and hence, again by complementary slackness, x,=0. Hence:

(22) x@F (M) =x(37(r) = EW (X6 () —x(8~(v))

=x(67(W))=x(3~(W))=c(d*(W)).

So the amount of flow is equal to the capacity of the cut §*(W). That is, we have
the famous max-flow min-cut theorem of Ford and Fulkerson [1956] and Elias,
Feinstein and Shannon [1956]:

(23) The maximum amount of r-s-flow subject to capacity ¢, is equal to the
minimum capacity of an r-s-cut.

By replacing y,z by J,Z with
(24) y,=1 if aes*(w),
7,=0 otherwise,
Z,=1 ifveW,
Z,=0 otherwise,

we obtain an integral optimum solution for the minimum in (20). If ¢ is integral,
also the maximum in (20) has an integral optimum solution, which is a result of
Dantzig [1951] — see Application 6 below.

Application 4. Edge-colourings. Let G=(V,E) be an undirected bipartite graph,
and consider the LP-duality equation:

295) max Y. X, =min Y, yy,
eeE M
subject to subject to

Y x,<1 (M matching) Y yu=1 (e€E),
eeM Mae

Xx,=0 (e€eE) yu=0 (M matching).

Suppose we know that the maximum here always has an integral optimum solution
(in Application 11 we shall see that this indeed holds). We show that this implies
that also the minimum has an integral optimum solution. Let y be any, possibly
fractional, optimum solution for the minimum. Let N be a matching with y,>0.
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By complementary slackness, any optimum solution x for the maximum (25) has
YecnXe=1. Therefore, uy=ug— 1, where ug denotes the common value of (25),
and uy the common value of (25) with respect to the graph H obtained from G by
deleting the edges in N. Now by induction, for A the minimum (25) has an integral
optimum solution y. Adding y,,=1 gives an integral optimum solution for the
minimum (25) with respect to G.

Note that the fact that both optima (25) have integral optimum solutions, is equi-
valent to the Frobenius-Kdnig theorem:

(26) The maximum degree in a bipartite graph G is equal to the minimum
number of colours needed to colour the edges of G so that no two edges
of the same colour meet in a vertex.

3. Total unimodularity

A matrix is called totally unimodular if each of its subdeterminants is 0, +1 or —1.
In particular, each entry is 0, +1 or —1. The link of total unimodularity with com-
binatorial optimization was laid by Hoffman and Kruskal [1956] who showed that
if A is totally unimodular and b is an integral vector, then max{cx| Ax=<b} has an
integral optimum solution, for each vector ¢ for which the optimum exists. Equiva-
lently, the polyhedron {xles b} is integral. This is not difficult to see: Any non-
singular submatrix of 4 has integral inverse, and therefore any system of linear
equations derived from Ax=<5b has an integral solution.

In fact, Hoffman and Kruskal showed: A is totally unimodular iff A is integral
and the polyhedron {x>0|Ax=<b} has integral vertices only, for each integral vec-
tor b.

There is the following characterization of total unimodularity due to Ghouila-
Houri [1962]:

27N A is totally unimodular iff each subcollection R of the rows of A4 can
be split into two classes R, and R, such that the sum of the rows in R,

minus the sum of the rows in R, is a vector with entries 0, +1 and —1
only.

A famous characterization of total unimodularity was given by Seymour [1980],
yielding a polynomial-time algorithm for testing total unimodularity.

Application 5. Optimal assignment. Let A be the incidence matrix of a bipartite
graph, i.e., A is a {0, 1}-matrix, whose rows can be split into two classes R, and R,
so that each column has exactly one 1 in R, and exactly one 1 in R,. It is not dif-
ficult to see that A is totally unimodular. A consequence is what we showed in Ap-
plication 1: In (12) the integrality conditions can be deleted. Another consequence

is that the following equality holds between two ILP-optima, for any bipartite graph
G=(V,E):
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(28) max Y. X, =min Y, y,
ecE veV
subject to subject to
Y x.<1 (veV) Y »=1 (e€E),
e3v VEE

X,z0 (e€E) »,=0 (weV),
X, integer ¥, integer.

This follows from the fact that by total unimodularity of the constraint matrix, we
may delete the integrality conditions, and that the two LP-optima are equal by the
LP-Duality Theorem.

Note that an optimum solution for the maximum in (28) is the characteristic vec-
tor of a matching in G, and that an optimum solution of the minimum in (28) is
the characteristic vector of an edge-covering point set. Therefore, (28) is equivalent
to the well-known K&nig-Egervary Theorem:

(29) The maximum size of a matching in a bipartite is equal to the minimum
size of an edge-covering point set.

Similarly, weighted versions follow.

Application 6. Network flows. Let A be the incidence matrix of a directed graph.
Then A is totally unimodular. A little more general: any {0, +1}-matrix with at most
one +1 and at most one —1 in each column is totally unimodular.

This implies that the minimum (20) has an integral optimum solution, which fact
we also proved as Application 3. Now we know moreover, if ¢ is integral, also the
maximum has an integral optimum solution. This fact was first shown by Dantzig
[1951]:

(30) If the capacities ¢ are integers, there is an integral optimum flow.

Similarly, a min-max relation for minimum cost flows follows.

4. Total dual integrality

The concept of total dual integrality was motivated by Edmonds and Giles [1977]
through the following result. Suppose we are given a rational system Ax< b of linear
inequalities with b integral, and consider the LP-duality equation

(1) max{cx| Ax<b} =min{yb|y=0, yA=c}.

Suppose the minimum has an integral optimum solution y for each integral vector
¢ for which the minimum is finite. Then the maximum also has an integral optimum
solution, for each such ¢. This last statement is equivalent to Ax< b defining an in-
tegral polyhedron.
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A system Ax<b is called totally dual integral if the minimum in (31) has an in-
tegral optimum solution y for each ¢ as above. Edmonds and Giles’ result thus says
that any totally dual integral system Ax < b with b integral, defines an integral poly-
hedron.

The result of Edmonds and Giles is not difficult to show in the special case where
P:={x|Ax<b} is pointed, i.c., where each minimal face of Pis a vertex (see Hoff-
man [1974]). Suppose a vertex x is not integral, say x; is not an integer. We can
find integral objective functions ¢ and ¢’ such that both ¢ and ¢’ attain their max-
imum over Pin x, and such that ¢’~¢=(1,0,...,0). Since for ¢ and ¢’ the minimum
(31) has an integral optimum solution and since b is integral, in both cases the
minimum value is an integer. These minimum values are c¢x and ¢’x, and therefore,
also cx—c¢’x=x, is an integer, contradicting our assumption.

This also shows the following special case of total dual integrality. Let A be a ra-
tional matrix and let & be an integral vector. If the maximum in

(32) min{cx| x>0, Ax=b} =max{yb|y=0, yA<c}

has an integral optimum solution for each integral vector ¢ for which the maximum
is finite, then the same holds for the minimum.

Application 7. Branchings and rooted cuts. Let D=(V, A) be a directed graph, and
let re V. An r-branching is a set T of arcs of D forming a rooted directed spanning
tree, with root r. That is, T contains no circuit and each vertex s=#r is entered by
exactly one arc in 7. A cut rooted in r or an r-cut is a set of arcs of the form o (W)
with @ W V\r.

It is immediate that each r-branching intersects each r-cut. Moreover, the minimal
r-cuts are exactly the minimal sets intersecting all ~branchings, and vice versa.

Fulkerson [1974] (cf. Edmonds [1967]) proved the following min-max equation.

Fulkerson’s optimum branching theorem. For any ‘length’ Junction |:A—7_, the
minimum length of an r-branching is equal to the maximum number t of r-cuts
Cy, ..., C, (repetition allowed), such that no arc a is in more than l(@) of the C,.

Before we prove the theorem, observe the following. Let B be the matrix with
columns indexed by A4, and with rows the characteristic vectors of the r-cuts. Then
the theorem states that for any [:A—Z,, the optima in

(33) min{/x| x>0, Bxz1}=max{y1|y=0, yB</}

are attained by integral optimum solutions, Here 1 denotes an all-one vector. By the

.Lheory of total dual integrality, it suffices to show that the maximum in (33) has an
Integer optimum solution.

Proof. Let y be an optimum solution for the maximum in (33), such that

(34) WP
wu% V\ryé(u) 4
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is as large as possible. Such a y exists by reason of compactness. Now let
(35 F={WV|ys >0}

Then .7 is laminar, i.e.,if U We.#then UC Wor Wc Uor UNW=0. For suppose
to the contrary that UZ WZ U and UN W#0. Let e:=min{ys Vs (w)} >0. Let
the vector y’ be given by:

(36) Y5y i=Ys(wy— & Vs wowyi=Ys wnwyt &

Yo w) =V =& Vs wuwyi=Ys-wuw)TE

and let y’ coincide with y in the other coordinates. Then y’=0, y’'B<yB, and y'1=
»1, so y’ again is an optimum solution in (33). However, (34) is augmented, contra-
dicting the maximality of (34).

Now let B, be the submatrix of B consisting of those rows of B corresponding
to sets in .#, Then B, is totally unimodular, as can be seen with Ghouila-Houri’s
characterization (27), using the laminarity of %

Now we have

(37 max{z1|z=0, zBy</} =max{y1l|y=0, yB=</}.

Indeed, < is trivial (by extending z with 0’s), while = follows from the fact that the
second maximum in (37) is attained by the vector y above, which has 0’s outside
B,.

Since B, is totally unimodular, the first maximum, and hence also the second
maximum has an integer optimum solution. [J

So although the constraints x>0, Bx=1 generally are not totally unimodular, in-
tegral optimum solutions are shown by proving that in the optimum the active con-
straints can be chosen to be totally unimodular. This method of proof is an example
of a general technique for deriving total dual integrality — see Edmonds & Giles
[1977] and Hoffman & Oppenheim [1978].

Edmonds [1967] and Fulkerson [1974] designed a polynomial-time algorithm for
finding a shortest branching. The polynomial solvability also follows with the ellip-
soid method, as the constraints for the maximum in (33):

(38) x,z0 (acA),
x(@~(W)=1 @+WCV\r),

can be checked in polynomial time, although there are exponentially many r-cuts in-
volved; for as in the Introduction above, we can consider x as a capacity function,
and find a minimum capacitated cut.

Application 8. Directed cuts and their coverings. Let D= (V, A) be a directed graph.
A directed cut is a set of arcs of the form § “(W), where @ W=V and 6 (W) =4.
A (directed cut) covering is a set of arcs intersecting each directed cut. It follows
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that a set E of arcs is a covering, iff the contraction of the arcs in £ makes D strongly

connected.
By a method similar to that of proving Fulkerson’s optimum branching theorem,
one can show that the system

39) x,=0 (ae A),

x(6~(W)=1 @+W=V, 67 (W)=0),
is totally dual integral. So the polyhedron determined by (39) has all its vertices in-
tegral, each being the characteristic vector of a directed cut covering.

The total dual integrality of (39) is equivalent to the following theorem of
Lucchesi and Younger [1978] (cf. Lovédsz [1976]):

Lucchesi-Younger theorem. The minimum size of a directed cut covering is equal
to the maximum number of pairwise disjoint directed cuts.

Since the system (39) can be checked in polynomial time, again with the help of
Ford and Fulkerson’s max-flow min-cut algorithm, also minimum length directed
cut coverings can be found in polynomial time, with ellipsoids. Direct polynomial
algorithms were given by Karzanov [1979], Lucchesi [1976] and Frank [1981].

5. Blocking polyhedra

Blocking and anti-blocking are variants of the classical polarity of polyhedra. It
was shown by Fulkerson [1970, 1971, 1972] that these relations have interesting
combinatorial implications.

The basis of the theory of blocking polyhedra is as follows. Let a, ..., a,, and
by, ..., b, be vectors in R? such that:

(40) {xeR{|ajx=1,...,apx=1} =conv.hull{b,, ..., b,} + R7 =: P.
Then the blocking polyhedron b(P) of P is defined by

(41) b(P):={yeR}|x"y=1 for each x in P},

and satisfies:

(42) b(P)={yeR}|biy=1,...,bfy=1} =conv.hull{a,, ...,a, } + R".

So for b(P) the roles of the a; and b; are interchanged compared with P. So the

facets (vertices, respectively) of P correspond to the vertices (facets, respectively) of
b(P). Moreover, b(b(P))=P.
Note that (40) is equivalent to:

(43) for each le RY: min{lby,...,Ib,} =max{y1|y=0, yA<I},

where A is the matrix with rows aT,...,aE. This equivalence follows by writing
down the dual program for the maximum in (43). Similarly, (42) is equivalent to:
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(44) for each we R": min{wa,,..., wa,, } = max{z1|z=0, zB<w},

where B is the matrix with rows b}, ..., b]. Since (40) and (42) are equivalent, also
(43) and (44) are equivalent: one class of min-max relations implies another, and
vice versa.

It follows from the ellipsoid method that if a, ...,a,, and by, ..., b, are related as
above, then

45) for each /e R} min{/by,...,[b,} can be determined in polynomial time,
iff for each we R} min{wa,, ..., wa,, } can be determined in polynomial
time,

also if ¢ and m are exponentially large with respect to the ‘original’ problem.

Application 9. Shortest paths and network flows. The theory of blocking polyhedra
gives another proof of the max-flow min-cut theorem. Let D=(V, A) be a directed
graph, and let r,se V. Let ay, ..., a,, be the characteristic vectors of the r-s-cuts; so
these are vectors in {0,1}*. Let b,,...,b, be the characteristic vectors of the r-s-
paths, again in {0,1}".

We first show that (43) holds. First suppose /: A—Z_, and let k be the length of
a shortest r-s-path. For each / with 1 <i<k, define

(46) V;:={ve V|there is an r-v-path of length <i}.

Then V,C V,C---C V), and re V;, s¢ V;. Let x; denote the characteristic vector of
the r-s-cut 5+(Vj). Then each yx; occurs among the g;, and x;+x,+ -+, </.
Therefore, (43) holds. Next, for rational-valued /, (43) follows from the integral case
by multiplying / with a large enough natural number. For real-valued /, (43) follows
by continuity.

So (43) holds, and hence, by the theory above, (44) also holds. But this is the max-
flow min-cut theorem: zB is an r-s-flow of value z1 subject to the capacity w, while
the minimum in (44) is the minimum capacity of an r-s-cut.

Since a shortest path can be found in polynomial time (with Dijkstra’s algorithm),
it follows from the ellipsoid method that a minimum capacitated cut can also be
determined in polynomial time — here polynomial means: polynomially bounded by
the sizes of D and c¢, not by the number of paths or cuts.

Application 10. Branchings and rooted cuts. Let D =(V, A) be a directed graph, and
let re V. Let ay, ..., qa,, be the characteristic vectors of the r-cuts, and let by,..., b,
be the characteristic vectors of the r-branchings (cf. Application 7).

From Application 7 we know that (43) holds. Therefore, by the theory of blocking
polyhedra, also (44) holds. It says that the minimum capacity of an r-cut is equal
to the maximum value of A, +--- + 4, for which there exist r-branchings T, ..., 7T,
such that for each arc a, the sum of the A; for which a belongs to T; is at most c,.

Edmonds [1973] showed that if ¢ is integral, we can take the A; integral. It means
that the system
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47 Y o x=1 (T r-branching),
aeT

x,=0 (acA)

is totally dual integral. In particular (in fact, equivalently), the minimum number
of arcs in an 7-cut is equal to the maximum number of pairwise disjoint r-branchings
(disjoint in the sense of having no common arcs). The proofs however (cf. also
Lovész [1976], Tarjan [1976]) are combinatorial and/or algorithmical, and not
polyhedral.

6. Anti-blocking polyhedra

A theory of anti-blocking polyhedra was also developed by Fulkerson [1971,
1972]. Let ay,...,a, and by,..., b, be vectors in R} such that
(48) {xeR"|alx=<1,...,aLx<1}=(conv.hull{b,,...,b,) + RH)NR" =: P.
Then the anti-blocking polyhedron of P is defined by
(49) a(P):={yeR?|x"y=1 for each x in P},
and satisfies:
(50) aP)={yeR"|bly<1,...,bfy<1}

=(conv.hull{ay,...,q,,} + RDHNR].

So again facets and vertices are interchanged, and we have another variant of the
classical polarity. It follows that a(a(P))=P.
Note that (48) is equivalent to:

(51) for each /e R}: max{/by,...,Ib,} =min{y1|y=0, yA=I[},

where A is the matrix with rows aT, ...,a},;. This equivalence follows by writing
down the dual program for the minimum in (51). Similarly, (50) is equivalent to:

(52) for each we RY: max{wa,,..., wa,}=min{z1|z=0, zB=w},

where B is the matrix with rows b7, ..., b]. Since (48) and (50) are equivalent, also
(51) and (52) are equivalent: one class of min-max relations implies another, and
vice versa.

Again, it follows from the ellipsoid method that if a,,...,q,, and b,, ..., b, are
related as above, then

(53) for each /e R} min{/b,,...,/b,} can be determined in polynomial time,
iff for each we R{ min{wa,, ..., wa,,} can be determined in polynomial
time,

also if ¢ and m are exponentially large with respect to the ‘original’ problem.
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Application 11. Stars and matchings. In Application 5 we saw that for any bipartite
graph G=(V,E), the polytope defined by:
(54) x,=0 (eeE),
x(@d)=1 ve V),

has integral vertices. (Here d(v) denotes the set of edges incident with v, and
X(B'):=¥,.p Xe-) So the vertices are exactly the characteristic vectors of match-
ings of G. Therefore, taking ay,...,a,, to be the characteristic vectors of the ‘stars’
d(v), and by, ..., b, the characteristic vectors of the matchings, we know that (48)
holds. Therefore, (50) also holds, i.e.

(55) Ye=0 (eeE),
yM)=1 (M matching),

defines a polytope whose vertices are the characteristic vectors of the stars. So the
maximum in the LP-duality equation

(56) max Y, y, =min ¥ 2y
¢ M
subject to subject to
Ye=0 (eeE) =0 (M matching),
y(M)<1 (M matching) MZeZle (eeE),
. M3

has an integral optimum solution, namely the incidence vector of a star. So the
maximum is equal to the maximum degree of G. In Application 4 we saw that this
implies that also the minimum has an integral optimum solution: hence it is equal
to the minimum number of matchings needed to cover E, i.e., it is the minimum
number of colours needed to colour the edges of G such that no two edges of the
same colour meet in a vertex of G. So (56) gives the Frobenius-Konig theorem.

Application 12. Perfect graphs. Perfect graphs were introduced by Berge [1961,
1962]. Consider the following numbers for an undirected graph G =(V, E):

(57) w(G) :=the clique number of G =maximum size of a clique;

¥(G) :=the colouring number of G =the minimum number of colours
needed to colour the vertices of G such that no two adjacent
vertices have the same colour (i.e., the minimum number of
cocliques needed to cover V);

a(G) :=the coclique number of G =the maximum size of a coclique
(=set of pairwise non-adjacent vertices);

7(G) :=the clique covering number =the minimum number of cliques
needed to cover V.
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Obviously, w(G)<y(G), a(G)=<7(G), w(G)=a(G), and 7(G)=y(G), where G
denotes the complementary graph of G (which has vertex set V, two vertices being
adjacent in G iff they are not adjacent in G). The circuit on 5 vertices shows that
the inequalities can be strict.

Now G is called perfect if w(G’)=y(G’) for each induced subgraph G’ of G.

Examples of perfect graphs are: (1) Bipartite graphs (trivially); (2) Complements
of bipartite graphs (by a theorem of K6nig, which can be derived from the total uni-
modularity of the incidence matrix of a bipartite graph — see Application 5 above);
(3) Line graphs of bipartite graphs (by the K6nig-Egervary theorem — see Applica-
tion 5); (4) Complements of line graphs of bipartite graphs (by the Frobenius-K&nig
theorem — see Application 11); (5) Comparability graphs (which, by definition, arise
from a partial order (¥, <), two vertices being adjacent iff they are comparable —
the perfectness is easy); (6) Complements of comparability graphs (by a theorem of
Dilworth [1950]).

It was conjectured by Berge [1961, 1962] and proved by Lovasz [1972] that the
complement of each perfect graph is perfect again, which implies several other min-
max relations. We give a polyhedral proof of this theorem, due to Fulkerson [1972],
Lovész [1972] and Chvatal [1975]. To this end, define for any undirected graph
G =(V,E) the clique polytope as the convex hull of the cliques in G, i.e., of their
characteristic vectors. Clearly, any vector x in the clique polytope satisfies

(58) @i x,=0 (veV),
(i) x(§)=1 (ScV, S coclique),

as the characteristic vector of each clique satisfies (58). The circuit on 5 vertices
shows that generally (58) can be larger than the clique polytope. Chvatal [1975]
showed that the clique polytope coincides with (58) if and only if G is perfect. This
can be seen to imply the perfect graph theorem.

First observe the following. Let Ax=<1 denote the inequality system (58) (ii). So
the rows of A4 are the characteristic vectors of the cocliques. Then it follows directly
from the definition of perfectness that G is perfect iff the optima in

(59) max{wx|x=0, Ax<1}=min{y1|y=0, y4=w}

have integral optimum solutions, for each {0, 1}-vector w.
Chvatal’s Theorem. G is perfect iff its cliqgue polytope is determined by (58).

Proof. (I) First suppose G is perfect. For w: V—Z_, let ¢, denote the maximum

weight of a clique. To prove that the clique polytope is given by (58), it suffices to
show that

(60) ¢, =max{wx|x=0, Ax<1}

for each w: V—Z,. This will be done by induction on Yoey Wo-
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If wis a {0,1}-vector, then (60) follows from the note preceding the statement
of Chvatal’s theorem. So we may assume that w,>2 for some vertex u. Let e, =1
and e,=0 if v#u. Replacing w by w—e in (59) and (60), gives, by induction, a vec-
tor y=0 such that yA=w-e and yl=c,_,. We may assume y4=w—e. Since
(w—e), =1, there is a coclique S with ys>0 and ueS. Let a be the characteristic
vector of S. Note that asw—e, since yA=w—e.

Then ¢, _,<c, . For suppose ¢, _,=c,. Let C be any clique with (w—a)(C)=
Cy_gq- Since ¢,_,=c,, a(C)=0. On the other hand, since w—a<w—e<w, we
know that (w—e)(C)=c,_,, and hence, by complementary slackness, a(C)>0, a
contradiction.

Therefore,

(61) cy=1+c,_,=1+max{(w-a)x|x=0, Ax=<1}

=max{wx|x=0, Ax=<1}
implying (60).

(IT) Conversely, suppose that the clique polytope is determined by (58), i.e., that
the maximum in (59) is attained by a clique, for each w. To show that G is perfect
it suffices to show that the minimum in (59) also has an integral optimum solution
for each {0,1}-valued w. This will be done by induction on ¥ _, w,.

Let w be {0, 1}-valued, and let y be a, not-necessarily integral, optimum solution
for the minimum in (59). Let S be a coclique with y¢> 0, and let a be its character-
istic vector (we may assume a<w). Then the common value of

(62) max{(w—a)x|x=0, Ax<1} =min{y1|y=0, y4A=(w—-a)}

is less than the common value of (59), since by complementary slackness, each op-
timum solution x in (59) has ax=1. However, the values in (59) and (62) are integers
(since by assumption the maxima have integral optimum solutions). Hence they dif-
fer by exactly one. Moreover, by induction the minimum in (62) has an integral op-
timum solution y. Increasing component ys of y by 1, gives an integral optimum
solution in (59). [

The theory of anti-blocking polyhedra now gives directly the perfect graph
theorem of Lovasz [1972]:

Perfect graph theorem. The complement of a perfect graph is perfect again.

Proof. If G is perfect, by Chvatal’s theorem, the clique polytope P of G is defined
by (58). Hence, by the theory of anti-blocking polyhedra, the coclique polytope of
G, i.e., the clique polytope of G is defined by (58) after replacing coclique by clique,
i.e., coclique of G. Applying Chvatal’s theorem again gives that G is perfect. [

So for any undirected graph, w(G’)=y(G’) for each induced subgraph, iff
a(G")=7(G’) for each induced subgraph.
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It is conjectured by Berge [1969] that a graph is perfect iff it has no induced sul?-
graph isomorphic to an odd circuit of length at least five or its complement. This
strong perfect graph conjecture is still unproved.

It was shown in Grotschel, Lovasz and Schrijver [1981] that a clique of maximum
size and a minimum vertex colouring in a perfect graph can be found in polynomial
time.

7. Cutting planes

For any polyhedron P, define P; as the convex hull of the integral vectors in P.
It is not difficult to show (and trivial if P is bounded) that P; is a polyhedron
again. Generally it is a difficult problem to find the inequalities defining P;. Karp
and Papadimitriou [1982] showed that generally P, has some ‘difficult’ facets, at
least if NP #co-NP.

The cutting plane method, developed by Gomory [1958], is a non-polynomial
method to find the facets of P; — see Chvatal [1973] and Schrijver [1980].

Obviously, if H is the affine half-space {x|cx=<d}, where c is a nonzero integral
vector whose components are relatively prime integers, then

(63) Hy={x|ex=|d]}.

Geometrically, Hj arises from H by shifting the bounding hyperplane until it con-
tains integral vectors. Now define for any polyhedron P:

(64) P:= () H,
HoP

where the intersection ranges over all affine half-spaces H as above with H2 P. As
PCH implies P{C Hj, it follows that P;C P’. So

(65) P2P2OP"2P"2--2P.

It can be shown that if P is a rational polyhedron (i.e., defined by rational inequa-
lities), then P’ is a rational polyhedron again, and that P" )=P, for some natural
number 7. (Here P\ is the (¢+ 1)-th polyhedron in (65).)

This is the theory of Gomory’s famous cutting plane method. The successive half-
spaces H| (more strictly, their bounding hyperplanes) are called cutting planes.

It can be shown that, for any fixed ¢, the class of integer linear programs for
which P;=P") has a ‘good characterization’, i.e., is in NPNco-NP.

Application 13. The matching polytope. Let G=(V,E) be an undirected graph, and
let Q be the matching polytope of G, i.e., Qis the convex hull of the characteristic
vectors of matchings in G (so Q¢ R¥). Let P be the polytope defined by

(66) X, =0 (e€E),
x(0(v)) =<1 (ve V).
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Since the integral vectors in P are exactly the characteristic vectors of matchings in
G, we know Q=Py. It is not difficult to see that P’ is the polytope determined by
67) x,z0 (eeE),
x(@@)=1 (e V),
x(U=1(U|-1) (UcvV, |U| odd).

Edmonds [1965] showed that in fact P'=P;=Q. That is, (67) determines the
matching polytope. One can derive this in an elementary way from the characteriza-
tion of the perfect matching polytope given in Application 2.

Application 14. The coclique polytope. Let G =(V, E) be an undirected graph, and

let Q be the coclique polytope of G, i.e., Q is the convex hull of the characteristic

vectors of cocliques (so Q € RY). It seems to be a difficult problem to find a set of

linear inequalities determining Q. If NP #co-NP, then Q will have ‘difficult’ facets.
As an approximation of the coclique polytope, let P be defined by

(68) x,=0 (ve V),
x(O)=1 (CcV, C clique).

So P is the anti-blocking polyhedron of the clique polytope — cf. Application 12.
As the integral solutions for (68) are exactly the characteristic vectors of cocliques,
we know Q=P;. Now we can ask: given G, for which r is P“'=P,=Q?

There is no natural number ¢ such that P*) = Q for each graph G, as was shown
by Chvatal [1973]. In Application 12 we saw that the class of graphs with P=Q is
exactly the class of perfect graphs. Chvatal [1973] raised the question whether there
exists, for each fixed ¢, a polynomial-time algorithm for finding the maximum size
of a coclique in G, for graphs G with P = Q. This is true for =0 — see Grotschel,
Lovasz and Schrijver [1981].
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